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PyDynamic is a Python software package developed jointly by mathematicians from Physikalisch-Technische Bun-
desanstalt (Germany) and National Physical Laboratory (UK) as part of the joint European Research Project EMPIR
14STPO8 Dynamic!.

For the PyDynamic homepage go to GitHub?.

PyDynamic is written in Python 3 and strives to run with all Python versions with upstream support’. Currently it is
tested to work with Python 3.5 to 3.8.

! https://mathmet.org/projects/14SIP0O8
2 https://github.com/PTB-PSt1/PyDynamic
3 https://devguide.python.org/#status-of-python-branches
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2 GETTING STARTED:



CHAPTER
ONE

INSTALLATION

There is a quick way to get started but we advise to setup a virtual environment and guide through the process in the
section Proper Python setup with virtual environment

1.1 Quick setup (not recommended)

If you just want to use the software, the easiest way is to run from your system’s command line

’pip install —--user PyDynamic

This will download the latest version from the Python package repository and copy it into your local folder of third-
party libraries. Note that PyDynamic runs with Python versions 3.5 to 3.8. Usage in any Python environment on your
computer is then possible by

’ import PyDynamic

or, for example, for the module containing the Fourier domain uncertainty methods:

’from PyDynamic.uncertainty import propagate_DFT

1.1.1 Updating to the newest version

Updates can then be installed via

’pip install --user —--upgrade PyDynamic

1.2 Proper Python setup with virtual environment (recommended)

The setup described above allows the quick and easy use of PyDynamic, but it also has its downsides. When working
with Python we should rather always work in so-called virtual environments, in which our project specific dependen-
cies are satisfied without polluting or breaking other projects’ dependencies and to avoid breaking all our dependencies
in case of an update of our Python distribution.

If you are not familiar with Python virtual environments * you can get the motivation and an insight into the mechanism
in the official docs”.

4 https://docs.python.org/3/glossary.html#term-virtual-environment
5 https://docs.python.org/3/tutorial/venv.html
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1.2.1 Create a virtual environment and install requirements

Creating a virtual environment with Python built-in tools is easy and explained in more detail in the official docs of
Python itself®.

It boils down to creating an environment anywhere on your computer, then activate it and finally install PyDynamic
and its dependencies.

venv creation and installation in Windows

In your Windows command prompt execute the following:

> py -3 -m venv LOCAL\PATH\TO\ENVS\PyDynamic_venv
> LOCAL\PATH\TO\ENVS\PyDynamic_venv\Scripts\activate.bat
(PyDynamic_venv) > pip install PyDynamic

venv creation and installation on Mac and Linux

In your terminal execute the following:

$ python3 -m venv /LOCAL/PATH/TO/ENVS/PyDynamic_venv
$ /LOCAL/PATH/TO/ENVS/PyDynamic_venv/bin/activate
(PyDynamic_venv) $ pip install PyDynamic

1.2.2 Updating to the newest version

Updates can then be installed on all platforms after activating the virtual environment via:

(PyDynamic_venv) $ pip install --upgrade PyDynamic

6 https://docs.python.org/3/tutorial/venv.html#creating- virtual-environments
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CHAPTER
TWO

EXAMPLES

On the project website in the examples and tutorials subfolders and the separate PyDynamic_tutorials’ repository you
can find various examples illustrating the application of PyDynamic. Here is just a short list to get you started.

2.1 Quick Examples

Uncertainty propagation for the application of an FIR filter with coefficients b with which an uncertainty ub is as-
sociated. The filter input signal is x with known noise standard deviation sigma. The filter output signal is y with
associated uncertainty uy.

from PyDynamic.uncertainty.propagate_filter import FIRuncFilter
y, uy = FIRuncFilter(x, sigma, b, ub)

Uncertainty propagation through the application of the discrete Fourier transform (DFT). The time domain signal is x
with associated squared uncertainty ux. The result of the DFT is the vector X of real and imaginary parts of the DFT
applied to x and the associated uncertainty UX.

from PyDynamic.uncertainty.propagate DFT import GUM_DFT
X, UX = GUM_DFT(x, ux)

Sequential application of the Monte Carlo method for uncertainty propagation for the case of filtering a time domain
signal x with an IIR filter ,a with uncertainty associated with the filter coefficients Uab and signal noise standard
deviation sigma. The filter output is the signal y and the Monte Carlo method calculates point-wise uncertainties uy
and coverage intervals Py corresponding to the specified percentiles.

from PyDynamic.uncertainty.propagate MonteCarlo import SMC
y, uy, Py = SMC(x, sigma, b, a, Uab, runs=1000, Perc=[0.025,0.975])

2.2 Detailed examples

More comprehensive examples you can find in provided Jupyter notebooks, which require additional dependencies to
be installed. This can be achieved by appending [examples] to PyDynamic in all of the above, e.g.

’ pip install PyDynamic[examples]

Afterwards you can browser through the following list:

7 https://github.com/PTB-PSt1/PyDynamic_tutorials
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%pylab inline

import numpy as np

import scipy.signal as dsp

from palettable.colorbrewer.qualitative import Dark2_38

colors = Dark2_8.mpl_colors
rst = np.random.RandomState (1)

Populating the interactive namespace from numpy and matplotlib

2.2.1 Design of a digital deconvolution filter (FIR type)

from PyDynamic.deconvolution.fit_filter import LSFIR unc

from PyDynamic.misc.SecondOrderSystem import =«

from PyDynamic.misc.testsignals import shocklikeGaussian

from PyDynamic.misc.filterstuff import kaiser_lowpass, db

from PyDynamic.uncertainty.propagate_filter import FIRuncFilter
from PyDynamic.misc.tools import make_semiposdef

# parameters of simulated measurement
Fs = 500e3
Ts =1 / Fs

# sensor/measurement system

f0 = 36e3; uf0 = 0.01xf0

SO = 0.4; us0= 0.001xs0

delta = 0.01; udelta = 0.lxdelta

# transform continuous system to digital filter
bc, ac = sos_phys2filter (S0,delta, £0)
b, a = dsp.bilinear (bc, ac, Fs)

# Monte Carlo for calculation of unc. assoc. with [real (H),imag(H) ]
f = np.linspace (0, 120e3, 200)

Hfc = sos_FreqResp (S0, delta, f£0, f)

Hf = dsp.freqgz(b,a,2+np.pi*f/Fs) [1]

runs = 10000
MCSO = SO0 + rst.randn (runs)*uS0
MCd = delta+ rst.randn (runs)*udelta

MCf0 = f0 + rst.randn (runs)+uf0
HMC = np.zeros((runs, len(f)),dtype=complex)
for k in range (runs):

bc_,ac_ = sos_phys2filter (MCSO[k], MCd[k], MCfO[k])
b_,a_ = dsp.bilinear (bc_,ac_,Fs)
HMC [k, :] = dsp.freqz(b_,a_,2+np.pi*f/Fs) [1]

H = np.r_[np.real (Hf), np.imag(Hf)]

uAbs = np.std(np.abs (HMC),axis=0)

uPhas= np.std(np.angle (HMC) ,axis=0)

UH= np.cov(np.hstack ((np.real (HMC),np.imag (HMC))), rowvar=0)
UH= make_semiposdef (UH)

6 Chapter 2. Examples
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Problem description

Assume information about a linear time-invariant (LTT) measurement system to be available in terms of its frequency
response values H (jw) at a set of frequencies together with associated uncertainties:

H = (|H(jw1)l,. .., [H(jwn)|, ZH(jw1), ..., ZH(jwn)) 2.1
u(H) = (u([H (jw1)]), ..., u(|H(jwn)|), u(£H (jwr)), . .., u(£LH (jwn)))

figure (figsize=(16,8))

errorbar (fxle-3, np.abs(Hf), uAbs, fmt=".", color=colors([0])
title ("measured amplitude spectrum with associated uncertainties")
x1im (0, 50)

xlabel ("frequency / kHz", fontsize=20)
ylabel ("magnitude / au", fontsize=20);

- measured amplitude spectrum with associated uncertainties

20+

15

10

magnitude / au

frequency / kHz

figure (figsize=(16,8))

errorbar (fxle-3, np.angle(Hf), uPhas, fmt=".", color=colors[1l])
title ("measured phase spectrum with associated uncertainties")
x1im (0, 50)

xlabel ("frequency / kHz", fontsize=20)
ylabel ("phase / rad", fontsize=20);

2.2. Detailed examples 7
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measured phase spectrum with associated uncertainties
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phase / rad
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frequency / kHz

Simulated measurement

Measurements with this system are then modeled as a convolution of the system’s impulse response
h(t) = F~1(H(jw))
with the input signal x(¢), after an analogue-to-digital conversion producing the measured signal

y[n] = (hxx)(t,) n=1,....,.M

# simulate input and output signals

time = np.arange (0, 4e-3 - Ts, Ts)

#x = shocklikeGaussian(time, t0 = 2e-3, sigma = le-5, m0=0.38)

m0 0.8; sigma = le-5; t0 = 2e-3

x = —m0x (time-t0) /sigma * np.exp(0.5)*np.exp (- (time-t0) *x 2 / (2 » sigma *x* 2))
y = dsp.lfilter (b, a, x)

noise = le-3

yn =y + rst.randn(np.size(y)) =* noise

figure (figsize=(16,8))

plot (timexle3, x, label="system input signal", color=colors([0])
plot (timexle3, yn,label="measured output signal", color=colors[1l])
legend (fontsize=20)

x1im(1.8,4); ylim(-1,1)

xlabel ("time / ms", fontsize=20)

ylabel (r"signal amplitude / $m/s”2$", fontsize=20);

8 Chapter 2. Examples
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— system input signal
— measured output signal
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Design of the deconvolution filter

The aim is to derive a digital filter with finite impulse response (FIR)

K
g(z) = Z bz k
k=0

such that the filtered signal
il =(g*y)n]  n=1,....M
<<<<<<< HEAD is an estimate of the system’s input signal at the discrete time points ======= is an estimate of the
system’s input signal at the discrete time points. >>>>>>> devell
Publication

* Elster and Link “Uncertainty evaluation for dynamic measurements modelled by a linear time-invariant system”
Metrologia, 2008

* Vuerinckx R, Rolain Y, Schoukens J and Pintelon R “Design of stable IIR filters in the complex domain by
automatic delay selection” IEEE Trans. Signal Process. 44 2339-44, 1996

Determine FIR filter coefficients such that
H(jw)g(e?®/Fs) = gmdwno/ for lw| < w;

with a pre-defined time delay n( to improve the fit quality (typically half the filter order).

Consider as least-squares problem
(y — Xb)TW ™ (y — Xb)
with - ¢ real and imaginary parts of the reciprocal and phase shifted measured frequency response values - X the

model matrix with entries e ~7¥</ s _  the sought FIR filter coefficients - W a weighting matrix (usually derived from
the uncertainties associated with the frequency response measurements

2.2. Detailed examples 9
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Filter coefficients and associated uncertainties are thus obtained as
-1
b= (X"W'X)  XTwly

up = (XTWLX) T XTW U, Wy (XTw )T

# Calculation of FIR deconvolution filter and its assoc. unc.
N = 12; tau = N//2
bF, UbF = deconv.LSFIR_unc(H,UH,N,tau, f,Fs)

Least-squares fit of an order 12 digital FIR filter to the
reciprocal of a frequency response given by 400 values

and propagation of associated uncertainties.

Final rms error = 1.545423e+01

figure (figsize=(16,8))

errorbar (range (N+1), bF, np.sgrt (np.diag(UbF)), fmt="o", color=colors[3])
xlabel ("FIR coefficient index", fontsize=20)

ylabel ("FIR coefficient value", fontsize=20);

100

FIR coefficient value

=100

—150 L L L L L
o 2 4 & 8 10 1z

FIR coefficient index

In order to render the ill-posed estimation problem stable, the FIR inverse filter is accompanied with an FIR low-pass
filter.

Application of the deconvolution filter for input estimation is then carried out as
jj[n - nO] = (g * (glow * y)[?’b]
with point-wise associated uncertainties calculated as

u?(&[n —ng] = b1 U,

Tlow

)b + T o [N UpZ10w[n] + trace(Us,,,, (m Us)

fcut = £0+10e3; low_order = 100
blow, lshift = kaiser_lowpass(low_order, fcut, Fs)
shift = —-tau - 1lshift

10 Chapter 2. Examples
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figure (figsize=(16,10))

HbF = dsp.freqz(bF,1,2xnp.pi*xf/Fs) [1l]+dsp.freqgz(blow,1l,2+np.pixf/Fs) [1]
semilogy (fxle-3, np.abs(Hf), label="measured frequency response")
semilogy (fxle=3, np.abs (HbF), label="inverse filter")

semilogy (fxle-3, np.abs (HfxHbF), label="compensation result")

legend() ;
10° .
— measured frequency response
— inverse filter
0| — compensation result
10° -
I
10\2_
10° | \
'.'m r\,r\/\r\ 2\ qf\f\ f\f\f\[/\\
104 I| || I"ll III \ | 'l || | |1
||f\ ff\',llllllr Ir(_\ I | | || I| I|i| || || ||'
I|| \
Il f\‘u fr\ f\
/ \ -
10° | II |||| 'l," '||.' ||| \‘f\ r'/ /“\' f f\vm
)
| ARRRRRRE
N T B B B || |
10° | || || .r
075 20 0 &0 100 120
xhat, Uxhat = FIRuncFilter (yn,noise,bF,UbF,shift,blow)
figure (figsize=(16,8))
plot (timexle3,x, label='input signal')
plot (timexle3, yn, label="output signal')
plot (timexle3, xhat, label="'estimate of input')
legend (fontsize=20)
xlabel ('"time / ms', fontsize=22)
ylabel ('signal amplitude / au', fontsize=22)
tick_params (which="both", labelsize=16)
x1im(1.9,2.4); ylim(-1,1);
2.2. Detailed examples 11
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1.0
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— output signal
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time / ms

2.3 2.4

figure (figsize=(16,10))

plot (timexle3, Uxhat)

xlabel ('time / ms', fontsize=22)

ylabel ('signal uncertainty / au', fontsize=22)
subplots_adjust (left=0.15, right=0.95)
tick_params (which='both', labelsize=16)
x1im(1.9,2.4);

0.032

0.030}

0.028¢

0.026}

0.024

0.022¢

signal uncertainty / au

0.020¢

0.018¢

onlq
time / ms

23 2.4
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Basic workflow in PyDynamic

Fit an FIR filter to the reciprocal of the measured frequency response

from PyDynamic.deconvolution.fit_filter import LSFIR_unc
bF, UbF = LSFIR_unc(H,UH,N,tau,f,Fs, verbose=False)

with
* H the measured frequency response values
* UH the covariance (i.e. uncertainty) associated with real and imaginary parts of H

N the filter order

* tau the filter delay in samples
* f the vector of frequencies at which H is given
* F's the sampling frequency for the digital FIR filter

Propagate the uncertainty associated with the measurement noise and the FIR filter through the deconvolution process

xhat, Uxhat = FIRuncFilter (yn,noise,bF,UbF,shift,blow)

with
* yn the noisy measurement
* noise the std of the noise
e shift the total delay of the FIR filter and the low-pass filter

* blow the coefficients of the FIR low-pass filter

%pylab inline
import scipy.signal as dsp

Populating the interactive namespace from numpy and matplotlib

2.2.2 Uncertainty propagation for IIR filters

from PyDynamic.misc.testsignals import rect

from PyDynamic.uncertainty.propagate_filter import IIRuncFilter
from PyDynamic.uncertainty.propagate_MonteCarlo import SMC

from PyDynamic.misc.tools import make_semiposdef

Digital filters with infinite impulse response (IIR) are a common tool in signal processing. Consider the measurand to
be the output signal of an IIR filter with z-domain transfer function

SN bz
G(z) = NS —.
1+> 8 amz™™

The measurement model is thus given by

ylk] = Z bpzlk —n] — za: amylk —m)

As input quantities to the model the input signal values [k] and the IIR filter coefficients (by, . .., an, ) are considered.

2.2. Detailed examples 13




PyDynamic Documentation

Linearisation-based uncertainty propagation

Scientific publication

A. Link and C. Elster,

“Uncertainty evaluation for IIR filtering using a
state-space approach,”

Meas. Sci. Technol., vol. 20, no. 5, 2009.

The linearisation method for the propagation of uncertainties through the IIR model is based on a state-space model
representation of the IIR filter equation

—ay -+ -+ —ay, 1
0 0
2l n+1] = : , 2+ | L | XN (2.2)
: N,—1 :
0 0
yln] = (di, ..., dn,)z " [n] + boX[n] + Aln], (2.3)
y[n] =d” z[n] + boy[n] 2.4)
u?(y[n]) :¢T(n)UM¢(n) + d* P,[n)d + b3, (2.5)
where
([ 0z[n] Ox[n] T
oln) = ( om " 5MN+N(,+NI,+1)
B 0z[n] 0z[n] T
P =2, (o) () 0

The linearization-based uncertainty propagation method for IIR filters provides
* propagation schemes for white noise and colored noise in the filter input signal
* incorporation of uncertainties in the IIR filter coefficients

* online evaluation of the point-wise uncertainties associated with the IIR filter output

Implementation in PyDynamic

y,Uy = IIRuncFilter (x,noise,b,a,Uab)
with
* x the filter input signal sequency
* noise the standard deviation of the measurement noise in x
¢ b, a the IIR filter coefficient
* Uab the covariance matrix associated with (a1, ...,bn,)

Remark

14 Chapter 2. Examples
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Implementation for more general noise processes than white
—one of the next revisions.

noise is considered for

Example

# parameters of simulated measurement
Fs = 100e3

Ts = 1.0/Fs

# nominal system parameter

fcut = 20e3

L =6

b,a = dsp.butter (L, 2xfcut/Fs,btype="'lowpass"')

f = linspace(0,Fs/2,1000)

figure (figsize=(16,8))

semilogy (f«le-3, abs(dsp.freqz(b,a,2+np.pi*xf/Fs) [1]))
ylim(0,10);

xlabel ("frequency / kHz", fontsize=18);
—fontsize=18)

ax2 = gca() .twinx()

ax2.plot (fxle-3,

ylabel ("frequency response amplitude / au",

unwrap (angle (dsp.freqz (b,a,2+np.pi*f/Fs) [1])),color="r")

ax2.set_ylabel ("frequency response phase / rad", fontsize=18);

10t ~ o
T
10.1 \‘"\-\._\KHH
a ~ -
- 10° ~ ©
] \\\\ =
-U S
g 10° g
a 2
E =%
o ?
y c
c 1w’ =]
=) o
o (0]
W ]
U g =
S 9
o c
5 10 ﬂj’
S =3
o y
Q 10 t=
|-
Y= —
1077 I
. . . . -10
o 10 20 el 40 50
frequency / kHz
time = np.arange (0,499+Ts,Ts)
t0 = 100xTs; tl = 300xTs
height = 0.9
noise = le-3
x = rect(time,t0,tl,height,noise=noise)

figure (figsize=(16,8))

plot (timexle3, x, label="input signal")

(continues on next page)

2.2. Detailed examples
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(continued from previous page)

legend (fontsize=20)
xlabel ('time / ms', fontsize=18)
ylabel ('signal amplitude / au', fontsize=18);

10

— input signal

08 |
>
T 06
—
12}
o
=1
=
o 04t
E
7]
©
& 0z |
w

0.0

-0.2 .

0 1 2 3 4 5
time / ms

# uncertain knowledge: ut between 19.8kHz and 20.2kHz

runs = 10000
FC = fcut + (2*np.random.rand(runs)-1)x0.2e3
AB = np.zeros((runs,len(b)+len(a)-1))

for k in range (runs) :
bb,aa = dsp.butter (L,2+FC[k]/Fs,btype="'lowpass"')
AB[k,:] = np.hstack((aall:],bb))

Uab = make_semiposdef (np.cov (AB, rowvar=0))

Uncertain knowledge: low-pass cut-off frequency is between 19.8 and 20.2 kHz

figure (figsize=(16,8))

subplot (121)

errorbar (range (len(b)), b, sqgrt(diag(Uab[L:,L:])),fmt=".")
title(r"coefficients $b_0,\ldots,b_ns$", fontsize=20)
subplot (122)

errorbar (range (len(a)-1), al[l:], sgrt(diag(Uab[:L, :L])),fmt=".");

title(r"coefficients $a_1,\ldots,a_n$", fontsize=20);

16
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Estimate of the filter output signal and its associated uncertainty
y,Uy = IIRuncFilter (x,noise,b,a,Uab)
figure (figsize=(16,8))
plot (timexle3, x, label="input signal")
plot (timexle3, y, label="output signal")
legend (fontsize=20)
xlabel ('"time / ms', fontsize=18)
ylabel ('signal amplitude / au', fontsize=18);
12
— input signal

08 [

— output signal
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©
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figure (figsize=(16,8))

plot (timexle3, Uy, "r", label="uncertainty")
legend (fontsize=20)

xlabel ('"time / ms', fontsize=18)

ylabel ('signal amplitude / au', fontsize=18);

0.0045

— uncertainty

0.0040 |
00035 |
0.0030 |
0.0025
0.0020 |- ’ \
0.0015 | ’ | “
I ’
I

0.0010 [ ‘

signal amplitude / au

0.0005

000000
time / ms
Monte-Carlo method for uncertainty propagation

The linearisation-based uncertainty propagation can become unreliable due to the linearisation errors. Therefore, a
Monte-Carlo method for digital filters with uncertain coefficients has been proposed in

S. Eichstadt, A. Link, P. Harris, and C. Elster,
“Efficient implementation of a Monte Carlo method
for uncertainty evaluation in dynamic measurements,”
Metrologia, vol. 49, no. 3, 2012.

The proposed Monte-Carlo method provides - a memory-efficient implementation of the GUM Monte-Carlo method -
online calculation of point-wise uncertainties, estimates and coverage intervals by taking advantage of the sequential
character of the filter equation

ylk] = Z bprlk —n] — i amylk —m)

yMC, UyMC = SMC (x,noise,b,a,Uab, runs=10000)

figure (figsize=(16,8))
plot (timexle3, Uy, "r", label="uncertainty (linearisation)")
plot (timexle3, UyMC, "g", label="uncertainty (Monte Carlo)")
legend (fontsize=20)

xlabel ('"time / ms', fontsize=18)

ylabel ('signal amplitude / au', fontsize=18);

18 Chapter 2. Examples
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SMC progress: 0% 10% 20% 30% 40% 50

o

°
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0.00Z |
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Basic workflow in PyDynamic

Using GUM linearization

time / ms

’y,Uy ITIRuncFilter (x,noise, b, a,Uab)

Using sequential GUM Monte Carlo method

’yMC,UyMC

SMC (x, noise, b, a,Uab, runs=10000)

’SMC progress: 0% 10%

%pylab inline
colors [[0.1,0.6,0.5],

[0.9,0.2,0.5],

[0.9,0.5,0.1]]

’Populating the interactive namespace from numpy and matplotlib

2.2. Detailed examples
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2.2.3 Deconvolution in the frequency domain (DFT)

from PyDynamic.uncertainty.propagate DFT import GUM_DFT,GUM_iDFT
from PyDynamic.uncertainty.propagate DFT import DFT_deconv, AmpPhase2DFT
from PyDynamic.uncertainty.propagate DFT import DFT_multiply

°

#%% reference data

ref_file = np.loadtxt ("DFTdeconv reference_signal.dat")
time = ref_file[:,0]

ref_data = ref_file[:,1]

Ts = 2e-9

N = len(time)

#%% hydrophone calibration data

calib = np.loadtxt ("DFTdeconv calibration.dat")
f = calib[:,0]

FR calib[:,1l]*np.exp(lj*calib[:,3])

Nf = 2x (len(f)-1)

uAmp = calib[:,2]
uPhas= calib[:, 4]
UAP = np.r_[uAmp,uPhas*np.pi/180]x*2

#%% measured hydrophone output signal

meas = np.loadtxt ("DFTdeconv measured_signal.dat")
y = meas[:,1]

# assumed noise std

noise_std = 4e-4

Uy = noise_stdx*2

Consider knowledge about the measurement system is available in terms of its frequency response with uncertainties
associated with amplitude and phase values.

H=(H(f)l,..., ZH(fN))

up = (WH(f)) - ULH(fx))

figure (figsize=(16,8))

errorbar (f » le-6, abs(FR), 2 * sqrt(UAP[:len(UAP) // 2]), fmt= ".-", alpha=0.2
—~color=colors[0])

x1im (0.5, 80)

ylim(0.04, 0.24)

xlabel ("frequency / MHz", fontsize=22); tick_params (which= "both", labelsize=18)
ylabel ("amplitude / V/MPa", fontsize=22);

o

20 Chapter 2. Examples




PyDynamic Documentation

0.20¢

0.15¢

amplitude / V/MPa

0.05}

10 20 30 40 50 60 70 80
frequency / MHz

figure (figsize=(16,8))

errorbar (f » le-6, unwrap(angle(FR)) * pi / 180, 2 * UAP[len (UAP) // 2:], fmt= ".-"
—alpha=0.2, color=colors([0])

x1im (0.5, 80)

ylim(-0.2, 0.3)

xlabel ("frequency / MHz", fontsize=22); tick_params (which= "both", labelsize=18)
ylim(-1,1)

ylabel ("phase / rad", fontsize=22);

[

1.0

0.5}

phase / rad
o
(=]

-1.0

10 20 30 40 50 60 70 80
frequency / MHz

The measurand is the input signal x = (x1,

..., xpr) to the measurement system with corresponding measurement
model given by

yln] = (hxz)[n] + eln]
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Input estimation is here to be considered in the Fourier domain.

The estimation model equation is thus given by

g=F""! (EE‘;))HL(JC)>

with - Y(f) the DFT of the measured system output signal - H,(f) the frequency response of a low-pass filter
Estimation steps
1) DFT of y and propagation of uncertainties to the frequency domain
2) Propagation of uncertainties associated with amplitude and phase of system to corr. real and imaginary parts
3) Division in the frequency domain and propagation of uncertainties
4) Multiplication with low-pass filter and propagation of uncertainties

5) Inverse DFT and propagation of uncertainties to the time domain

Propagation from time to frequency domain

With the DFT defined as
N-1
Vi =Y ynexp(—jkBy)
n=0
with 3,, = 2mn /N, the uncertainty associated with the DFT outcome represented in terms of real and imaginary parts,
is given by

U _ CcoszC;ros CCOSUyC:;En
Y= (CCOSUyCT )T CsinUyC;i—n

sin

Y,UY = GUM_DFT (y, Uy, N=Nf)

figure (figsize=(18,6))

subplot (121)

errorbar (timexle6, y, sqgrt (Uy)«ones_like(y), fmt=".-")

xlabel ("time / us", fontsize=20); ylabel ("pressure / Bar", fontsize=20)
subplot (122)

errorbar (fxle—-6, Y[:len(f)],sqrt(UY[:1len(f)]),label="real part")

errorbar (fxle-6, Y[len(f):],sqgrt(UY¥[len(f):]),label="imaginary part")
legend ()

xlabel ("frequency / MHz", fontsize=20); ylabel ("amplitude / au", fontsize=20);

10 B0

F real part
- imaginary part

08

06 |

04+

02+

pressure / Bar
amplitude / au

0.0

“00 05 10 15 20 o 50 100 150 200 250

time / us frequency / MHz
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Uncertainties for measurement system w.r.t. real and imaginary parts

In practice, the frequency response of the measurement system is characterised in terms of its amplitude and phase
values at a certain set of frequencies. GUM uncertainty evaluation, however, requires a representation by real and
imaginary parts.

H, = A, COS(Pk> +JAk sin(Pk)

GUM uncertainty propagation

[ Ra Rp
UAA UAP T U11 U12
Ug=C Cr; = .
" R’( Ulp Upp ) M Uy Uss
H, UH = AmpPhase2DFT (np.abs (FR),np.angle (FR), UAP)
Nf = len(f)

figure (figsize=(18,6))
subplot (121)

errorbar (fxle-6, H[:Nf],
xlabel ("frequency / MHz", fontsize=20);
subplot (122)
errorbar (fxle-6,
xlabel ("frequency / MHz", fontsize=20);

sqrt (diag (UH[:Nf, :Nf])), fmt=".-",color=colors[2],alpha=0.2)
ylabel ("real part / au", fontsize=20)

H[Nf:],sqgrt (diag (UH[Nf:,Nf:])), fmt=".-",color=colors[2],alpha=0.2)
ylabel ("imaginary part / au", fontsize=20);

0.25 0.15

020 H

015 H

010

00s

real part/ au
imaginary part / au

=0.05 |
000 |

—0.10
o 50 100 150 200 250 o 50 100 150 200 250

frequency / MHz frequency / MHz

—0.05

Deconvolution in the frequency domain

The deconvolution problem can be decomposed into a division by the system’s frequency response followed by a
multiplication by a low-pass filter frequency response.

Y(f)

H(f)HL(f)

X(f) =

which in real and imaginary part becomes

(%yﬁRH'+'%}£}H)-+j(—§h/%}{+*sy4RH)

X:
R2, + 3%,

(§RHL +jSHL>

Sensitivities for division part
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oR Ru
R =—X _ 2.6
B TRy T R, 9% 2.6)
oOR Su
Ryy =—2X = 2.7
TSy T ORL + 9% @7
R . 6§RX . —%y%% + %y%% — 23y SRy 2.8)
= OR gy (R2, +3%)2 '
o Ry _ SyRy —SySh — 2Ry RSy 29
oSy (R2, +3%)2 '
Ny Sy
Ipy = X — 2.10
B ZoRy T R+ (2-10)
N Ry
Iy = X — 2.11
TSy T ORL, 49 @10
89?)( —%ny%{ + %YC\\S%{ + 2Ry SRy
Tpy =% _ Lo Mk (2.12)
Ry (R3, +3%))
8%X —%y%% + %y%%{ — 28y RSy
I =X = L (2.13)
oSSy (N7, + %)
Uncertainty blocks for multiplication part
Uxrr =R, UarrRu, — Su Ui R, — R, UariSu,, + S, UarrS, (2.14)
Uxrr =Ru, UarrS#, — S, UsriSa, + R, UariRu, — S, UanRu, (2.15)
Uxir =Uip; (2.16)
Uxrr =S, UarrSH, + R, UsriSu, + Su,UariRu, + Re, UarnRu, (2.17)

# low-pass filter for deconvolution
def lowpass (f, fcut=80e6) :
return 1/ (1+1j+f/fcut) x*2

HLc = lowpass (f)
HL = np.r_[np.real (HLc), np.imag(HLc) ]

XH,UXH = DFT_deconv (H, Y, UH, UY)

XH, UXH = DFT_multiply(XH, UXH, HL)

figure (figsize=(18,6))

subplot (121)

errorbar (fxle-6, XH[:Nf], sqgrt(diag(UXH[:Nf, :Nf])),fmt=".-",color=colors[2],alpha=0.2)
xlabel ("frequency / MHz", fontsize=20); ylabel ("real part / au", fontsize=20)

subplot (122)

errorbar (fxle-6, XH[Nf:],sqgrt(diag(UXH[Nf:,Nf:])),fmt=".-",color=colors[2],alpha=0.2)
xlabel ("frequency / MHz", fontsize=20); ylabel ("imaginary part / au", fontsize=20);
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Propagation from frequency to time domain

The inverse DFT equation is given by

=

1

Xn:ﬁ

(Ri, cos(kBy,) — Sk sin(kp,,))
0

~
Il

The sensitivities for the GUM propagation of uncertainties are then

f;;;’: Z% for k = 0 (2.18)
85');: :%Cos(kﬁn) fork=1,...,N/2—-1 (2.19)
g%: ~0 for k = 0 (2.20)
g%::—%sin(kﬁn) fork=1,...,N/2 —1. (2.21)
GUM uncertainty propagation for the inverse DFT
CrUrCE = (Coos, Ciin) ( g’;{: g’;f ) ( g: ) (2.22)
=CeosUrRCos + 2CeosUr1Cliy + CainUrrCl, (2.23)

xh,Uxh = GUM_1iDFT (XH, UXH, Nx=N)

ux = np.sqrt (np.diag(Uxh))

figure (figsize=(16,8))

plot (timexle6,xh, label="estimated pressure signal",linewidth=2,color=colors[0])
plot (time * le6, ref_data, "--", label= "reference data", linewidth=2,
—color=colors[1l])

fill_between(time » le6, xh + 2 x ux, xh - 2 x ux, alpha=0.2, color=colors[0])

(continues on next page)
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(continued from previous page)

xlabel ("time / ps", fontsize=22)

ylabel ("signal amplitude / MPa", fontsize=22)
tick_params (which= "major", labelsize=18)

legend (loc= "upper left", fontsize=18, fancybox=True)
x1im (0, 2);

5 .
— estimated pressure signal .
41| --- reference data

o 3
=
- 2f
o
3 1
=
o
E () NS
©
© -1}
c
o
n =2

_3_

8.0 0.5 1.0 1.5 2.0

time / us

figure (figsize=(16,8))
plot (time % le6, ux, label= "uncertainty", linewidth=2, color=colors([0])

xlabel ("time / ps", fontsize=22)

ylabel ("uncertainty / MPa", fontsize=22)
tick_params (which= "major", labelsize=18)
x1im (0, 2);
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Summary of PyDynamic workflow for deconvolution in DFT domain

Y,UY = GUM_DFT (y, Uy, N=Nf)
H, UH = AmpPhase2DFT (A, P, UAP)

XH,UXH = DFT_deconv (H,Y,UH, UY)

XH, UXH = DFT_multiply(XH, UXH, HL)
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CHAPTER
THREE

ADVICES AND TIPS FOR CONTRIBUTORS

If you want to become active as developer, we provide all important information here to make the start as easy as
possible. The code you produce should be seamlessly integrable into PyDynamic by aligning your work with the
established workflows. This guide should work on all platforms and provide everything needed to start developing for
PyDynamic. Please open an issue or ideally contribute to this guide as a start, if problems or questions arise.

3.1 Guiding principles

The PyDynamic development process is based on the following guiding principles:
« support all major Python versions supported upstream ®.
* actively maintain, ensuring security vulnerabilities or other issues are resolved in a timely manner
* employ state-of-the-art development practices and tools, specifically
— follow semantic versioning®
— use conventional commit messages'’

— consider the PEPS style guide, wherever feasible

3.2 Get started developing

3.2.1 Get the code on GitHub and locally

For collaboration we recommend forking the repository as described here!!. Simply apply the changes to your fork
and open a Pull Request on GitHub as described here'”. For small changes it will be sufficient to just apply your
changes on GitHub and send the PR right away. For more comprehensive work, you should clone your fork and read
on carefully.

8 https://devguide.python.org/#status-of-python-branches

9 https://semver.org/

10 hitps://www.conventionalcommits.org/en/v1.0.0/

' https://help.github.com/en/articles/fork-a-repo

12 https://help.github.com/en/articles/creating- a- pull-request
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3.2.2 Initial development setup

This guide assumes you already have a valid runtime environment for PyDynamic as described in the README'?.
To start developing, install the required dependencies for your specific Python version. To find it, activate the desired
virtual environment and execute:

(PyDynamic_venv) $ python —--version
Python 3.8.3

Then upgrade/install pip and pip-tools which we use to pin our dependencies to specific versions:

(PyDynamic_venv) $ pip install —--upgrade pip pip-tools

You can then initially install or at any later time update all dependencies to the versions we use. From the repository
root run pip-tools’ command pip-sync'* e.g. for Python 3.8:

(PyDynamic_venv) $ pip-sync requirements/dev-requirements-py38.txt requirements/
—requirements-py38.txt

3.2.3 Advised toolset

We use black' to implement our coding style, Sphinx'® for automated generation of our documentation on ReadThe-
Docs!”. We use pyrest'® managed by rox!” as testing framework backed by hypothesis® and coverage®'. For auto-
mated releases we use python-semantic-release®” in our pipeline on CircleCI* . All requirements for contributions are
derived from this. If you followed the steps for the initial development setup you have everything at your hands.

3.2.4 Coding style

As long as the readability of mathematical formulations is not impaired, our code should follow PEP8%*. For automat-

ing this uniform formatting task we use the Python package black®. It is easy to handle and integrable into most
common IDEs?®, such that it is automatically applied.

13 https://github.com/PTB-PSt1/PyDynamic/blob/master/README
14 https://pypi.org/project/pip-tools/#example-usage-for-pip-sync
15 https://pypi.org/project/black/

16 https://pypi.org/project/Sphinx/

17 https://pydynamic.readthedocs.io/en/latest/

18 hitps://pypi.org/project/pytest/

19 https://pypi.org/project/tox/

20 https://pypi.org/project/hypothesis/

21 https://pypi.org/project/coverage/

22 https://github.com/relekang/python-semantic-release

23 https://app.circleci.com/pipelines/github/PTB-PSt1/PyDynamic
24 https://www.python.org/dev/peps/pep-0008/

25 https://pypi.org/project/black/

26 https://github.com/psf/black#editor-integration
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3.2.5 Commit style

Conventional commit messages”’ are required for the following:
* Releasing automatically according to semantic versioning?®
* Generating a changelog automatically?’

Parts of the commit messages and links appear in the changelogs of subsequent releases as a result. We use the
following types:

e feat: for commits that introduce new features

* docs: for commits that contribute significantly to documentation

* fix: commits in which bugs are fixed

* build: Commits that affect packaging

* ci: Commits that affect the CI pipeline

* test: Commits that apply significant changes to tests

* chore: Commits that affect other non-PyDynamic components (e.g. ReadTheDocs, Git , ... )
* revert: commits, which undo previous commits using git revert

* refactor: commits that merely reformulate, rename or similar

* style: commits, which essentially make changes to line breaks and whitespace

* wip: Commits which are not recognizable as one of the above-mentioned types until later, usually during a PR
merge. The merge commit is then marked as the corresponding type.

3.2.6 Testing

We strive to increase our code coverage®” with every change introduced. This requires that every new feature and every
change to existing features is accompanied by appropriate pytest testing. We test the basic components for correctness
and, if necessary, the integration into the big picture. It is usually sufficient to create appropriately named?' methods
in one of the existing modules in the subfolder test. If necessary add a new module that is appropriately named.

3.3 Workflow for adding completely new functionality

In case you add a new feature you generally follow the pattern:

* read through and follow this contribution advices and tips, especially regarding the advised tool set and commit
style

* open an according issue to submit a feature request and get in touch with other PyDynamic developers and users

« fork the repository or update the master branch of your fork and create an arbitrary named feature branch from
master

¢ decide which package and module your feature should be integrated into

27 https://www.conventionalcommits.org/en/v1.0.0/#summary

28 https://semver.org/

29 https://github.com/PTB-PSt1/PyDynamic/releases/tag/v1.4.0

30 https://codecov.io/gh/PTB-PSt1/PyDynamic

31 https://docs.pytest.org/en/latest/goodpractices.html#conventions-for- python-test-discovery
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« if there is no suitable package or module, create a new one and a corresponding module in the fest subdirectory
with the same name prefixed by rest_

* after adding your functionality add it to all higher-level __all__ variables in the module itself and in the
higher-level __init__ .pys

« if new dependencies are introduced, add them to setup.py or dev-requirements.in

* during development write tests in alignment with existing test modules, for example rest_interpolate® or
test_propagate_filter>

+ write docstrings in the NumPy docstring format®*

* as early as possible create a draft pull request onto the upstream’s master branch

* once you think your changes are ready to merge, request a review>> from the PTB-PSt1/pydynamic-devs (you
will find them in the according drop-down) and mark your PR as ready for review°

* at the latest now you will have the opportunity to review the documentation automatically generated from the
docstrings on ReadTheDocs after your reviewers will set up everything

* resolve the conversations and have your pull request merged

3.4 Documentation

The documentation of PyDynamic consists of three parts. Every adaptation of an existing feature and every new
feature requires adjustments on all three levels:

¢ user documentation on ReadTheDocs

 examples in the form of Jupyter notebooks for extensive features and Python scripts for features which can be
comprehensively described with few lines of commented code

* developer documentation in the form of comments in the code

3.4.1 User documentation

To locally generate a preview of what ReadTheDocs will generate from your docstrings, you can simply execute after
activating your virtual environment:

(PyDynamic_venv) $ sphinx-build docs/ docs/_build
Sphinx v3.1.1 in Verwendung

making output directory...

[...]

build abgeschlossen.

The HTML pages are in docs/_build.

After that you can open the file ./docs/_build/index.html relative to the project’s root with your favourite browser.
Simply re-execute the above command after each change to the docstrings to update your local version of the docu-
mentation.

32 https://github.com/PTB-PSt1/PyDynamic/blob/master/test/test_interpolate.py

33 https://github.com/PTB-PSt1/PyDynamic/blob/master/test/test_propagate_filter.py

34 https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

35 https://help.github.com/en/github/collaborating- with-issues-and- pull-requests/requesting- a- pull-request-review

36 https://help.github.com/en/github/collaborating- with-issues-and-pull-requests/changing- the- stage- of-a-pull-request#
marking-a-pull-request-as-ready- for-review
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3.4.2 Examples

We want to provide extensive sample material for all PyDynamic features in order to simplify the use or even make
it possible in the first place. We collect the examples in a separate repository PyDynamic_tutorials ¥ separate from
PyDynamic to better distinguish the core functionality from additional material. Please refer to the corresponding
README for more information about the setup and create a pull request accompanying the pull request in PyDynamic
according to the same procedure we describe here.

3.4.3 Comments in the code
Regarding comments in the code we recommend to invest 45 minutes for the PyCon DE 2019 Talk of Stefan Schwarzer,

a 20+-years Python developer: Commenting code - beyond common wisdom?.

3.5 Manage dependencies

As stated in the README and above we use pip-tools®® for dependency management. The requirements subdirectory
contains a requirements.txt and a dev-requirements.txt for all supported Python versions, with a suffix naming the ver-
sion, for example requirements-py35.txt*” To keep them up to date semi-automatically we use the bash script require-
ments/upgrade_dependencies.sh*'. Tt contains extensive comments on its use. pip-tools’ command pip-compile
finds the right versions from the dependencies liste in setup.py and the dev-requirements.in.

3.6 Licensing

All contributions are released under PyDynamic’s GNU Lesser General Public License v3.0%2.

37 https://github.com/PTB-PSt1/PyDynamic_tutorials

38 https://www.youtube.com/watch?v=tP5uWCruaBs&list=PLHd2BPBhxqRLEhEaOFMWHBGpzyyF-ChZU &index=22&t=0s
39 https://pypi.org/project/pip-tools/

40 https://github.com/PTB-PSt1/PyDynamic/blob/master/requirements/requirements-py35.txt

41 https://github.com/PTB-PSt1/PyDynamic/blob/master/requirements/upgrade_dependencies.sh

42 https://github.com/PTB-PSt1/PyDynamic/blob/master/licence.txt
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CHAPTER
FOUR

EVALUATION OF UNCERTAINTIES

The evaluation of uncertainties is a fundamental part of the measurement analysis in metrology. The analysis of
dynamic measurements typically involves methods from signal processing, such as digital filtering, the discrete Fourier
transform (DFT), or simple tasks like interpolation. For most of these tasks, methods are readily available, for instance,
as part of scipy.signal®. This module of PyDynamic provides the corresponding methods for the evaluation of
uncertainties.

The package consists of the following modules:
* PyDynamic.uncertainty.propagate_DFT: Uncertainty evaluation for the DFT
e PyDynamic.uncertainty.propagate_filter: Uncertainty evaluation for digital filtering
* PyDynamic.uncertainty.propagate_MonteCarlo: Monte Carlo methods for digital filtering

e PyDynamic.uncertainty.interpolation: Uncertainty evaluation for interpolation

4.1 Uncertainty evaluation for the DFT

The PyDynamic.uncertainty.propagate_DEFT module implements methods for the propagation of uncer-
tainties in the application of the DFT, inverse DFT, deconvolution and multiplication in the frequency domain, trans-
formation from amplitude and phase to real and imaginary parts and vice versa.

The corresponding scientific publications is S. Eichstddt und V. Wilkens GUM2DFT — a software tool for uncer-
tainty evaluation of transient signals in the frequency domain. Measurement Science and Technology, 27(5),
055001, 2016. [DOI: 10.1088/0957-0233/27/5/055001%]

This module contains the following functions:

* GUM_DFT (): Calculation of the DFT of the time domain signal x and propagation of the squared uncertainty
Ux associated with the time domain sequence x to the real and imaginary parts of the DFT of x

e GUM_1DFT (): GUM propagation of the squared uncertainty UF associated with the DFT values F through the
inverse DFT

* GUM _DFTfreq(): Return the Discrete Fourier Transform sample frequencies

* DFT_transferfunction (): Calculation of the transfer function H = Y/X in the frequency domain with X
being the Fourier transform of the system’s input signal and Y that of the output signal

e DFT_deconv (): Deconvolution in the frequency domain
e DFT_multiply (): Multiplication in the frequency domain

e AmpPhaseZDFT (): Transformation from magnitude and phase to real and imaginary parts

43 https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
4 http://dx.doi.org/10.1088/0957-0233/27/5/055001
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* DFT2AmpPhase (): Transformation from real and imaginary parts to magnitude and phase
* AmpPhase2Time (): Transformation from amplitude and phase to time domain
* TimeZ2AmpPhase (): Transformation from time domain to amplitude and phase

PyDynamic.uncertainty.propagate_DFT.AmpPhase2DFT (A, P, UAP, keep_sparse=False)
Transformation from magnitude and phase to real and imaginary parts

Calculate the vector F=[real,imag] and propagate the covariance matrix UAP associated with [A, P]
Parameters
* A(np.ndarray of shape (N, ))- vector of magnitude values
* P(np.ndarray of shape (N, ))- vector of phase values (in radians)

* UAP (np.ndarray of shape (2N,2N)) - covariance matrix associated with (A,P)
or vector of squared standard uncertainties [u"2(A),u*2(P)]

* keep_sparse (bool, optional)- whether to transform sparse matrix to numpy ar-
ray or not

Returns

* F (np.ndarray) — vector of real and imaginary parts of DFT result
* UF (np.ndarray) — covariance matrix associated with F

PyDynamic.uncertainty.propagate_DFT.AmpPhase2Time (A, P, UAP)
Transformation from amplitude and phase to time domain

GUM propagation of covariance matrix UAP associated with DFT amplitude A and phase P to the result of the

inverse DFT. Uncertainty UAP is assumed to be given for amplitude and phase with blocks: UAP = [[u(A,A),
u(A,P)],[u(P,A),u(P,P)]]

Parameters

* A(np.ndarray of shape (N, ))- vector of amplitude values

* P(np.ndarray of shape (N, ))- vector of phase values (in rad)

* UAP (np.ndarray of shape (2N, 2N))- covariance matrix associated with [A,P]
Returns

* X (np.ndarray) — vector of time domain values

* Ux (np.ndarray) — covariance matrix associated with x

PyDynamic.uncertainty.propagate_DFT.DFT2AmpPhase (F, UF, keep_sparse=False, tol=1.0,

return_type='separate’)
Transformation from real and imaginary parts to magnitude and phase

Calculate the matrix U_AP = [[U1l,U2],[U27T,U3]] associated with magnitude and phase of the vector
F=[real,imag] with associated covariance matrix U_F=[[URR,URI],[URI*T,UII]]

Parameters

* F (np.ndarray of shape (2M,)) — vector of real and imaginary parts of a DFT
result

* UF (np.ndarray of shape (2M,2M)) - covariance matrix associated with F

* keep_sparse (bool, optional) — if true then UAP will be sparse if UF is one-
dimensional
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* tol (float, optional)-lower bound for A/uF below which a warning will be issued
concerning unreliable results

* return_type (str, optional) — If “separate” then magnitude and phase are re-
turned as separate arrays. Otherwise the array [A, P] is returned

If return_type is separate:
Returns
* A (np.ndarray) — vector of magnitude values
» P (np.ndarray) — vector of phase values in radians, in the range [-pi, pi]
* UAP (np.ndarray) — covariance matrix associated with (A,P)
Otherwise:
Returns
* AP (np.ndarray) — vector of magnitude and phase values
* UAP (np.ndarray) — covariance matrix associated with AP

PyDynamic.uncertainty.propagate_DFT.DFT_deconv (H, Y, UH, UY)
Deconvolution in the frequency domain

GUM propagation of uncertainties for the deconvolution X = Y/H with Y and H being the Fourier transform
of the measured signal and of the system’s impulse response, respectively. This function returns the covariance
matrix as a tuple of blocks if too large for complete storage in memory.

Parameters

* H(np.ndarray of shape (2M,))-real and imaginary parts of frequency response
values (N an even integer)

* Y(np.ndarray of shape (2M,))-real and imaginary parts of DFT values

* UH (np.ndarray of shape (2M,2M)) - covariance matrix associated with H

e UY (np.ndarray of shape (2M,2M)) - covariance matrix associated with Y
Returns

* X (np.ndarray of shape (2M,)) — real and imaginary parts of DFT values of deconv result

» UX (np.ndarray of shape (2M,2M)) — covariance matrix associated with real and imaginary
part of X

References
¢ Eichstidt and Wilkens [Eichst2016]
PyDynamic.uncertainty.propagate_DFT.DFT multiply (Y, F, UY, UF=None)
Multiplication in the frequency domain

GUM uncertainty propagation for multiplication in the frequency domain, where the second factor F may have
an associated uncertainty. This method can be used, for instance, for the application of a low-pass filter in the
frequency domain or the application of deconvolution as a multiplication with an inverse of known uncertainty.

Parameters
* Y(np.ndarray of shape (2M,))-real and imaginary parts of the first factor

* F(np.ndarray of shape (2M,))—real and imaginary parts of the second factor
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e UY (np.ndarray either shape (2M,) or shape (2M,2M)) — covariance
matrix or squared uncertainty associated with Y

* UF (np.ndarray of shape (2M,2M)) — covariance matrix associated with F (op-
tional), default is None

Returns
* YF (np.ndarray of shape (2M,)) — the product of Y and F
» UYF (np.ndarray of shape (2M,2M)) — the uncertainty associated with YF

PyDynamic.uncertainty.propagate_DFT.DFT_transferfunction (X, Y, UX, UY)
Calculation of the transfer function H = Y/X in the frequency domain

Calculate the transfer function with X being the Fourier transform of the system’s input signal and Y that of the
output signal.

Parameters
* X (np.ndarray) —real and imaginary parts of the system’s input signal
* Y (np.ndarray) —real and imaginary parts of the system’s output signal
* UX (np.ndarray) — covariance matrix associated with X
e UY (np.ndarray) — covariance matrix associated with Y

Returns
* H (np.ndarray) — real and imaginary parts of the system’s frequency response
» UH (np.ndarray) — covariance matrix associated with H

This function only calls DFT_deconv.

PyDynamic.uncertainty.propagate_DFT.GUM _DFT (x, Ux, N=None, window=None, Cx-
Cos=None, CxSin=None, returnC=False,

mask=None)
Calculation of the DFT with propagation of uncertainty

Calculation of the DFT of the time domain signal x and propagation of the squared uncertainty Ux associated
with the time domain sequence x to the real and imaginary parts of the DFT of x.

Parameters
* x (numpy.ndarray of shape (M, ))- vector of time domain signal values

* Ux (numpy.ndarray) — covariance matrix associated with x, shape (M,M) or vector of
squared standard uncertainties, shape (M,) or noise variance as float

* N(int, optional)-length of time domain signal for DFT; N>=len(x)

e window (numpy.ndarray, optional of shape (M, ))— vector of the time do-
main window values

* CxCos (numpy.ndarray, optional)— cosine partof sensitivity matrix

* CxSin (numpy.ndarray, optional)- sine partof sensitivity matrix

returnC (bool, optional) - if true, return sensitivity matrix blocks for later use

* mask (ndarray of dtype bool) — calculate DFT values and uncertainties only at
those frequencies where mask is True

Returns

* F (numpy.ndarray) — vector of complex valued DFT values or of its real and imaginary parts
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» UF (numpy.ndarray) — covariance matrix associated with real and imaginary part of F

References
¢ Eichstidt and Wilkens [Eichst2016]
PyDynamic.uncertainty.propagate_DFT.GUM _DFTfreq (N, dt=1)
Return the Discrete Fourier Transform sample frequencies
Parameters
* N (int) - window length
* dt (float)—sample spacing (inverse of sampling rate)
Returns f— Array of lengthn//2 + 1 containing the sample frequencies
Return type ndarray

See also:
None () :numpy.fft.rfftfreq

PyDynamic.uncertainty.propagate_DFT.GUM_AiDFT (F, UF, Nx=None, Cc=None, Cs=None, re-

turnC=False)
GUM propagation of the squared uncertainty UF associated with the DFT values F through the inverse DFT

The matrix UF is assumed to be for real and imaginary part with blocks: UF = [[u(R,R), u(R,D],[u(L,R),u(L,I)]]
and real and imaginary part obtained from calling rfft (DFT for real-valued signal)

Parameters

* F (np.ndarray of shape (2M,)) — vector of real and imaginary parts of a DFT
result

* UF (np.ndarray of shape (2M,2M))— covariance matrix associated with real and
imaginary parts of F

* Nx (int, optional)-number of samples of iDFT result
* Cc(np.ndarray, optional)-cosine partof sensitivities (without scaling factor 1/N)
* Cs (np.ndarray, optional)- sine part of sensitivities (without scaling factor 1/N)

* returnC (if true, return sensitivity matrix blocks (without
scaling factor 1/N))-

Returns
* X (np.ndarray) — vector of time domain signal values

» Ux (np.ndarray) — covariance matrix associated with x
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References
¢ Eichstidt and Wilkens [Eichst2016]
PyDynamic.uncertainty.propagate_DFT.Time2AmpPhase (x, Ux)
Transformation from time domain to amplitude and phase
Parameters
* x(np.ndarray of shape (N, ))-time domain signal
* Ux (np.ndarray of shape (N,N))- squared uncertainty associated with x
Returns
* A (np.ndarray) — amplitude values
* P (np.ndarray) — phase values
* UAP (np.ndarray) — covariance matrix associated with [A,P]

PyDynamic.uncertainty.propagate_DFT.Time2AmpPhase_multi (x, Ux, selector=None)
Transformation from time domain to amplitude and phase

Perform transformation for a set of M signals of the same type.
Parameters
* x (np.ndarray of shape (M, nx))—M time domain signals of length nx

* Ux (np.ndarray of shape (M, )) - squared standard deviations representing noise
variances of the signals x

* selector (np.ndarray of shape (L,), optional) — indices of amplitude
and phase values that should be returned; default is 0:N-1

Returns
* A (np.ndarray of shape (M,N)) — amplitude values
* P (np.ndarray of shape (M,N)) — phase values

» UAP (np.ndarray of shape (M, 3N)) — diagonals of the covariance matrices: [diag(UAA),
diag(UAP), diag(UPP)]

4.2 Uncertainty evaluation for digital filtering

This module contains functions for the propagation of uncertainties through the application of a digital filter using the
GUM approach.

This modules contains the following functions:
* FIRuncFilter (): Uncertainty propagation for signal y and uncertain FIR filter theta

e ITRuncFilter (): Uncertainty propagation for the signal x and the uncertain IIR filter (b,a)

Note: The Elster-Link paper for FIR filters assumes that the autocovariance is known and that noise is stationary!
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PyDynamic.uncertainty.propagate_filter.FIRuncFilter (y, sigma_noise, theta,
Utheta=None, shift=0,

blow=None, kind="corr')
Uncertainty propagation for signal y and uncertain FIR filter theta

Parameters
* y (np.ndarray) — filter input signal

* sigma_noise (float or np.ndarray)- float: standard deviation of white noise in
y 1D-array: interpretation depends on kind

* theta (np.ndarray) — FIR filter coefficients

* Utheta (np.ndarray) — covariance matrix associated with theta
* shift (int) - time delay of filter output signal (in samples)

* blow (np.ndarray) — optional FIR low-pass filter

* kind (string) — only meaningfull in combination with isinstance(sigma_noise,
numpy.ndarray) “diag”: point-wise standard uncertainties of non-stationary white noise
“corr”: single sided autocovariance of stationary (colored/corrlated) noise (default)

Returns
* X (np.ndarray) — FIR filter output signal

* ux (np.ndarray) — point-wise uncertainties associated with x

References
¢ Elster and Link 2008 [Elster2008]

See also:
PyDynamic.deconvolution.fit_filter

PyDynamic.uncertainty.propagate_filter.IIRuncFilter (x, noise, b, a, Uab)
Uncertainty propagation for the signal x and the uncertain IIR filter (b,a)

Parameters

* x (np.ndarray) — filter input signal

* noise (float) - signal noise standard deviation

* b (np.ndarray) — filter numerator coefficients

* a (np.ndarray) - filter denominator coefficients

e Uab (np.ndarray) — covariance matrix for (a[1:],b)
Returns

* y (np.ndarray) — filter output signal

» Uy (np.ndarray) — uncertainty associated with y
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References

¢ Link and Elster [Link2009]

4.3 Monte Carlo methods for digital filtering

The propagation of uncertainties via the FIR and IIR formulae alone does not enable the derivation of credible intervals,
because the underlying distribution remains unknown. The GUM-S2 Monte Carlo method provides a reference method
for the calculation of uncertainties for such cases.

This module implements Monte Carlo methods for the propagation of uncertainties for digital filtering.
This module contains the following functions:

e MC (): Standard Monte Carlo method for application of digital filter

* SMC (): Sequential Monte Carlo method with reduced computer memory requirements

e UMC (): Update Monte Carlo method for application of digital filters with reduced computer memory require-
ments

* UMC_generic (): Update Monte Carlo method with reduced computer memory requirements

PyDynamic.uncertainty.propagate_MonteCarlo.MC (x, Ux, b, a, Uab, runs=1000, blow=None,
alow=None, return_samples=False,

shift=0, verbose=True)
Standard Monte Carlo method

Monte Carlo based propagation of uncertainties for a digital filter (b,a) with uncertainty matrix Uy for § =
(al, e 7CLN(L,bQ,. . .7bNb)T

Parameters
* x (np.ndarray) — filter input signal

* Ux (float or np.ndarray) — standard deviation of signal noise (float), point-wise
standard uncertainties or covariance matrix associated with x

* b (np.ndarray) - filter numerator coefficients
* a (np.ndarray) - filter denominator coefficients
* Uab (np.ndarray) — uncertainty matrix Uy
e runs (int, optional) - number of Monte Carlo runs
* return_samples (bool, optional)—whether samples or mean and std are returned
If return_samples is False, the method returns:
Returns
* y (np.ndarray) — filter output signal
» Uy (np.ndarray) — uncertainty associated with
Otherwise the method returns:
Returns Y — array of Monte Carlo results

Return type np.ndarray
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References
¢ Eichstidt, Link, Harris and Elster [Eichst2012]

PyDynamic.uncertainty.propagate_MonteCarlo.SMC (x, noise_std, b, a, Uab=None,
runs=1000, Perc=None, blow=None,
alow=None, shift=0, re-
turn_samples=False, phi=None,

theta=None, Delta=0.0)
Sequential Monte Carlo method

Sequential Monte Carlo propagation for a digital filter (b,a) with uncertainty matrix Uy for 6§ =
(al, N ,aNa’,bo, ey bNb)T

Parameters
* x (np.ndarray) — filter input signal
* noise_std (float) - standard deviation of signal noise
* b (np.ndarray) - filter numerator coefficients
* a (np.ndarray) - filter denominator coefficients
* Uab (np.ndarray) — uncertainty matrix Uy
e runs (int, optional)-—number of Monte Carlo runs
* Perc(list, optional)- listof percentiles for quantile calculation
* blow (np.ndarray) — optional low-pass filter numerator coefficients
* alow (np.ndarray) — optional low-pass filter denominator coefficients
* shift (int) - integer for time delay of output signals

* return_samples (bool, otpional)— whether to return y and Uy or the matrix Y
of MC results

* theta (phi,) — parameters for AR(MA) noise model e(n) = >, ¢re(n — k) +
>k Okw(n — k) + w(n) with w(n) ~ N(0, noisestd?)

* Delta (float, optional)—upper bound on systematic error of the filter
If return_samples is False, the method returns:
Returns
* y (np.ndarray) — filter output signal (Monte Carlo mean)
* Uy (np.ndarray) — uncertainties associated with y (Monte Carlo point-wise std)
* Quant (np.ndarray) — quantiles corresponding to percentiles Perc (if not None)
Otherwise the method returns:
Returns Y — array of all Monte Carlo results

Return type np.ndarray
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References

¢ Eichstidt, Link, Harris, Elster [Eichst2012]

PyDynamic.uncertainty.propagate_MonteCarlo.UMC (x, b, a, Uab, runs=1000, block-

size=8, blow=1.0, alow=1.0, phi=0.0,
theta=0.0, sigma=1, Delta=0.0,
runs_init=100, nbins=1000, credi-
ble_interval=0.95)

Batch Monte Carlo for filtering using update formulae for mean, variance and (approximated) histogram.
is a wrapper for the UMC_generic function, specialised on filters

Parameters

* x (np.ndarray, shape (nx, ))-filterinput signal

* b(np.ndarray, shape (nbb, ))-filter numerator coefficients

* a (np.ndarray, shape (naa, )) - filter denominator coefficients, normalization

(a[0] == 1.0) is assumed

Uab (np.ndarray, shape (naa + nbb - 1, ))-uncertainty matrix Uy
runs (int, optional)- number of Monte Carlo runs

blocksize (int, optional)-how many samples should be evaluated for at a time

blow(float or np.ndarray, optional)-filter coefficients of optional low pass
filter

alow(float or np.ndarray, optional)-filtercoefficients of optional low pass
filter

phi (np.ndarray, optional,) - see misc.noise. ARMA noise model
theta (np.ndarray, optional)- see misc.noise. ARMA noise model
sigma (float, optional)- see misc.noise. ARMA noise model

Delta (float, optional)— upper bound of systematic correction due to regularisa-
tion (assume uniform distribution)

runs_init (int, optional) - how many samples to evaluate to form initial guess
about limits

nbins (int, list of int, optional)-—number of bins for histogram

credible_interval (float, optional)-— mustbe in [0,1] central credible inter-
val size

By default, phi, theta, sigma are chosen such, that N(0,1)-noise is added to the input signal.

Returns

y (np.ndarray) — filter output signal

Uy (np.ndarray) — uncertainty associated with

y_cred_low (np.ndarray) — lower boundary of credible interval
y_cred_high (np.ndarray) — upper boundary of credible interval

happr (dict) — dictionary keys: given nbin dictionary values: bin-edges val[“bin-edges™],
bin-counts val[“bin-counts”]

This
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References

¢ Eichstidt, Link, Harris, Elster [Eichst2012]

* ported to python in 2019-08 from matlab-version of Sascha Eichstaedt (PTB) from 2011-10-12

 copyright on updating formulae parts is by Peter Harris (NPL)

PyDynamic.uncertainty.propagate_MonteCarlo.UMC_generic (draw_samples, evaluate,
runs=100, blocksize=8,
runs_init=10, nbins=100,
return_samples=False,
n_cpu=2)
Generic Batch Monte Carlo using update formulae for mean, variance and (approximated) histogram. Assumes

that the input and output of evaluate are numeric vectors (but not necessarily of same dimension). If the output
of evaluate is multi-dimensional, it will be flattened into 1D.

Parameters

* draw_samples (function(int nDraws)) — function that draws nDraws from a
given distribution / population needs to return a list of (multi dimensional) numpy.ndarrays

* evaluate (function (sample)) — function that evaluates a sample and returns the
result needs to return a (multi dimensional) numpy.ndarray

e runs (int, optional)-number of Monte Carlo runs
* blocksize (int, optional)-how many samples should be evaluated for at a time

* runs_init (int, optional) - how many samples to evaluate to form initial guess
about limits

* nbins (int, list of int, optional)-—number of bins for histogram
* return_samples (bool, optional)- see return-value of documentation

* n_cpu (int, optional)- number of CPUs to use for multiprocessing, defaults to all
available CPUs

Example

draw samples from multivariate normal distribution: draw_samples = lambda size: np.random.
multivariate_normal (x, Ux, size)

build a function, that only accepts one argument by masking additional kwargs: evaluate =
functools.partial (_UMCevaluate, nbb=b.size, x=x, Delta=Delta, phi=phi,
theta=theta, sigma=sigma, blow=blow, alow=alow) evaluate = functools.
partial (bigFunction, *xxdict_of_kwargs)

By default the method
Returns
*y (np.ndarray) — mean of flattened/raveled simulation output i.e.: y =

np.ravel(evaluate(sample))
» Uy (np.ndarray) — covariance associated with y
* happr (dict) — dictionary of bin-edges and bin-counts

* output_shape (tuple) — shape of the unraveled simulation output can be used to reshape y
and np.diag(Uy) into original shape
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If return_samples is True, the method additionally returns all evaluated samples. This should only be
done for testing and debugging reasons, as this removes all memory-improvements of the UMC-method.

Returns sims — dict of samples and corresponding results of every evaluated simulation samples and
results are saved in their original shape

Return type dict

References

¢ Eichstidt, Link, Harris, Elster [Eichst2012]

4.4 Uncertainty evaluation for interpolation

Deprecated since version 2.0.0: The module PyDynamic.uncertainty.interpolation will be renamed to
PyDynamic.uncertainty.interpolate in the next major release 2.0.0. From version 1.4.3 on you should
only use the new module instead.

The PyDynamic.uncertainty.interpolation module implements methods for the propagation of uncer-
tainties in the application of standard interpolation methods as provided by scipy.interpolate.interpld®.

This module for now still contains the following function:
e interpld_unc (): Interpolate arbitrary time series considering the associated uncertainties

PyDynamic.uncertainty.interpolation.interpld unc (f_new: numpy.ndarray, t:
numpy.ndarray, y: numpy.ndarray,
wy:  numpy.ndarray, kind:  Op-
tional[str] = 'linear', copy=True,
bounds_error: Optional[bool]
= None, Sfill_value: Op-
tional[ Union[float, Tuple[float,
float], str]] = nan, fill_unc: Op-
tional[ Union[float, Tuple[float,
float], str]] = nan, assume_sorted:
Optional[bool] = True, re-
turnC: Optional[bool] = False)
— Union[Tuple[numpy.ndarray,
numpy.ndarray, numpy.ndarray], Tu-
ple[numpy.ndarray, numpy.ndarray,

numpy.ndarray, numpy.ndarray]]
Interpolate a 1-D function considering the associated uncertainties

tand y are arrays of values used to approximate some function f: y = f(t).
Note that calling interpld _unc () with NaNs present in input values results in undefined behaviour.

An equal number of each of the original timestamps (or frequencies), values and associated uncertainties is
required.

Parameters

* t_new((M,) array like)— A 1-D array of real values representing the timestamps
(or frequencies) at which to evaluate the interpolated values. t_new can be sorted in any
order.

45 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
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t ((N,) array_like) — A 1-D array of real values representing timestamps (or fre-
quencies) in ascending order.

y ((N,) array_ like)— A 1-D array of real values. The length of y must be equal to
the length of t.

uy ((N,) array_like)— A 1-D array of real values representing the standard uncer-
tainties associated with y.

kind(str, optional)- Specifiesthe kind of interpolation for y as a string (‘previous’,
‘next’, ‘nearest’ or ‘linear’). Default is ‘linear’.

copy (bool, optional)-IfTrue, the method makes internal copies of t and y. If False,
references to t and y are used. The default is to copy.

bounds_error (bool, optional)-—If True, a ValueError is raised any time interpo-
lation is attempted on a value outside of the range of x (where extrapolation is necessary).
If False, out of bounds values are assigned fill_value. By default, an error is raised unless
fill_value="extrapolate” .

£fill value (array-like or (array-like, array_like) or
“extrapolate”, optional)-—

— if a ndarray (or float), this value will be used to fill in for requested points outside of the
data range. If not provided, then the default is NaN.

— If a two-element tuple, then the first element is used as a fill value for ¢_new < t[0] and
the second element is used for #_new > #/-1]. Anything that is not a 2-element tuple (e.g.,
list or ndarray, regardless of shape) is taken to be a single array-like argument meant to
be used for both bounds as below, above = fill_value, fill_value.

— If “extrapolate”, then points outside the data range will be set to the first or last element
of the values.

Both parameters fill_value and fill_unc should be provided to ensure desired behaviour in
the extrapolation range.

fill unc (array-1like or (array-like, array_ like) or
“extrapolate”, optional) — Usage and behaviour as described in fill_value
but for the uncertainties. Both parameters fill_value and fill_unc should be provided to
ensure desired behaviour in the extrapolation range.

assume_sorted (bool, optional) — If False, values of t can be in any order and
they are sorted first. If True, t has to be an array of monotonically increasing values.

returnC (bool, optional)—If True, return sensitivity coefficients for later use. This
is only available for interpolation kind ‘linear’ and for fill_unc="extrapolate” at the moment.
If False sensitivity coefficients are not returned and internal computation is slightly more
efficient.

If returnC is False, which is the default behaviour, the method returns:

Returns

Otherwise the

Returns

t_new ((M,) array_like) — interpolation timestamps (or frequencies)
y_new ((M,) array_like) — interpolated values
uy_new ((M,) array_like) — interpolated associated standard uncertainties

method returns:

4.4. Uncertainty

evaluation for interpolation
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t_new ((M,) array_like) — interpolation timestamps (or frequencies)
* y_new ((M,) array_like) — interpolated values

* uy_new ((M,) array_like) — interpolated associated standard uncertainties

C ((M,N) array_like) — sensitivity matrix C, which is used to compute the uncertainties
U, = C - diag(u) - CT

Ynew

References

* White [White2017]
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CHAPTER
FIVE

MODEL ESTIMATION

The estimation of the measurand in the analysis of dynamic measurements typically corresponds to a deconvolution
problem. Therefore, a digital filter can be designed whose input is the measured system output signal and whose
output is an estimate of the measurand. The package Model estimation implements methods for the design of such
filters given an array of frequency response values or the reciprocal of frequency response values with associated
uncertainties for the measurement system.

The package Model estimation also contains a function for the identification of transfer function models.
The package consists of the following modules:

e PyDynamic.model_estimation.fit_filter: least-squares fitto a given complex frequency response
or its reciprocal

e PyDynamic.model_estimation.fit_transfer: identification of transfer function models

5.1 Fitting filters to frequency response or reciprocal

The module PyDynamic.model _estimation.fit_filter contains several functions to carry out a least-
squares fit to a given complex frequency response and the design of digital deconvolution filters by least-squares
fitting to the reciprocal of a given frequency response each with associated uncertainties.

This module contains the following functions:
e LSIIR(): Least-squares IIR filter fit to a given frequency response
e LSFIR (): Least-squares fit of a digital FIR filter to a given frequency response
* invLSFIR (): Least-squares fit of a digital FIR filter to the reciprocal of a given frequency response.
* invLSFIR unc (): Design of FIR filter as fit to reciprocal of frequency response values with uncertainty

e invLSFIR uncMC (): Design of FIR filter as fit to reciprocal of frequency response values with uncertainty
via Monte Carlo

* invLSTIR (): Design of a stable IIR filter as fit to reciprocal of frequency response values

e invLSIIR unc (): Design of a stable IIR filter as fit to reciprocal of frequency response values with uncer-
tainty

PyDynamic.model_estimation.fit_filter.LSFIR (H, N, tau, f, Fs, Wt=None)
Least-squares fit of a digital FIR filter to a given frequency response.

Parameters
* H((complex) frequency response values of shape (M,))-

* N(FIR filter order)-—
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* tau(delay of filter)-—
e £ (frequencies of shape (M,))—
* Fs (sampling frequency of digital filter)-—

* Wt ((optional) vector of weights of shape (M,) or shape (M,
M))—

Returns
Return type filter coefficients bFIR (ndarray) of shape (N+1,)

PyDynamic.model_estimation.fit_filter.LSIIR (Hvals, Nb, Na,f, Fs, tau=0, justFit=False)
Least-squares IIR filter fit to a given frequency response.

This method uses Gauss-Newton non-linear optimization and pole mapping for filter stabilization
Parameters

* Hvals (numpy array of (complex) frequency response values of
shape (M,))-—

* Nb (integer numerator polynomial order)-—
* Na (integer denominator polynomial order)-—

o £ (numpy array of frequencies at which Hvals is given of
shape) —

® (M/) -
* Fs (sampling frequency)-—
e tau(integer initial estimate of time delay)-

* justFit (boolean, when true then no stabilization is carried
out) —

Returns
* b,a (/IR filter coefficients as numpy arrays)

* tau (filter time delay in samples)

References

¢ Eichstidt et al. 2010 [Eichst2010]
¢ Vuerinckx et al. 1996 [Vuer1996]
PyDynamic.model_estimation.fit_filter.invLSFIR (H, N, tau, f, Fs, Wt=None)
Least-squares fit of a digital FIR filter to the reciprocal of a given frequency response.
Parameters

* H (np.ndarray of shape (M,) and dtype complex) — frequency response
values

* N (int) - FIR filter order
* tau (float) - delay of filter
*» f(np.ndarray of shape (M, ))- frequencies

* Fs (float) - sampling frequency of digital filter
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* Wt (np.ndarray of shape (M,) - optional)- vector of weights
Returns bFIR — filter coefficients
Return type np.ndarray of shape (N,)

References
¢ Elster and Link [Elster2008]

PyDynamic.model_estimation.fit_filter.invLSFIR_unc (H, UH, N, tau,f, Fs, wt=None, ver-

bose=True, trunc_svd_tol=None)
Design of FIR filter as fit to reciprocal of frequency response values with uncertainty

Least-squares fit of a digital FIR filter to the reciprocal of a frequency response for which associated uncertainties
are given for its real and imaginary part. Uncertainties are propagated using a truncated svd and linear matrix
propagation.

Parameters
* H(np.ndarray of shape (M,))- frequency response values

e UH (np.ndarray of shape (2M,2M)) — uncertainties associated with the real and
imaginary part

* N (int)— FIR filter order

* tau (float) — delay of filter

* f (np.ndarray of shape (M, ))-frequencies
* F's (float) - sampling frequency of digital filter

* wt (np.ndarray of shape (2M,) - optional) — array of weights for a
weighted least-squares method

* verbose (bool, optional)— whether to print statements to the command line

* trunc_svd_tol (float)-lower bound for singular values to be considered for pseudo-
inverse

Returns
* b (np.ndarray of shape (N+1,)) — filter coefficients of shape
* Ub (np.ndarray of shape (N+1,N+1)) — uncertainties associated with b

References
¢ Elster and Link [Elster2008]

PyDynamic.model_estimation.fit_filter.invLSFIR_uncMC (H, UH, N, tau, f, Fs, ver-
bose=True)
Design of FIR filter as fit to reciprocal of frequency response values with uncertainty
Least-squares fit of a FIR filter to the reciprocal of a frequency response for which associated uncertainties are
given for its real and imaginary parts. Uncertainties are propagated using a Monte Carlo method. This method
may help in cases where the weighting matrix or the Jacobian are ill-conditioned, resulting in false uncertainties
associated with the filter coefficients.

Parameters
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* H (np.ndarray of shape (M,) and dtype complex) — frequency response
values

* UH (np.ndarray of shape (2M,2M)) — uncertainties associated with the real and
imaginary part of H

* N (int) - FIR filter order

* tau (int) - time delay of filter in samples

* f (np.ndarray of shape (M, ))- frequencies corresponding to H

* Fs (float) - sampling frequency of digital filter

* verbose (bool, optional)— whether to print statements to the command line
Returns

* b (np.ndarray of shape (N+1,)) — filter coefficients of shape

e Ub (np.ndarray of shape (N+1, N+1)) — uncertainties associated with b

References
¢ Elster and Link [Elster2008]

PyDynamic.model_estimation.fit_filter.invLSIIR (Hvals, Nb, Na, f, Fs, tau, justFit=False,

verbose=True)
Design of a stable IR filter as fit to reciprocal of frequency response values

Least-squares fit of a digital IIR filter to the reciprocal of a given set of frequency response values using the
equation-error method and stabilization by pole mapping and introduction of a time delay.

Parameters

* Hvals (np.ndarray of shape (M,) and dtype complex) — frequency re-
sponse values.

* Nb (int) — order of IIR numerator polynomial.

* Na (int) — order of IIR denominator polynomial.

* f(np.ndarray of shape (M, ))- frequencies corresponding to Hvals

* Fs (float) - sampling frequency for digital IIR filter.

* tau (float) - initial estimate of time delay for filter stabilization.

* justFit (bool) —if True then no stabilization is carried out.

* verbose (bool) - If True print some more detail about input parameters.
Returns

* b (np.ndarray) — The IIR filter numerator coefficient vector in a 1-D sequence

* a (np.ndarray) — The IIR filter denominator coefficient vector in a 1-D sequence

* tau (inf) — time delay (in samples)
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References
 FEichstadt, Elster, Esward, Hessling [Eichst2010]
PyDynamic.model_estimation.fit_filter.invLSIIR_ unc (H, UH, Nb, Na,f, Fs, tau=0)

Design of stabel IIR filter as fit to reciprocal of given frequency response with uncertainty

Least-squares fit of a digital IIR filter to the reciprocal of a given set of frequency response values with given
associated uncertainty. Propagation of uncertainties is carried out using the Monte Carlo method.

Parameters

* H (np.ndarray of shape (M,) and dtype complex) — frequency response
values.

* UH (np.ndarray of shape (2M,2M)) — uncertainties associated with real and
imaginary part of H

* Nb (int)— order of IIR numerator polynomial.

* Na (int) — order of IR denominator polynomial.

* f (np.ndarray of shape (M, ))-frequencies corresponding to H

* Fs (float) - sampling frequency for digital IIR filter.

* tau (float) — initial estimate of time delay for filter stabilization.
Returns

e b,a (np.ndarray) — IIR filter coefficients

* tau (inf) — time delay (in samples)

» Uba (np.ndarray of shape (Nb+Na+ 1, Nb+Na+ 1)) — uncertainties associated with [a[1:],b]

References
* Eichstédt, Elster, Esward and Hessling [Eichst2010]

See also:

PyDynamic.uncertainty.propagate_ filter.IIRuncFilter PyDynamic.
model_ estimation.fit filter.invLSIIR

5.2 ldentification of transfer function models

The module PyDynamic.model_estimation.fit_transfer contains a function for the identification of
transfer function models.

This module contains the following function:
e fit_som/(): Fit second-order model to complex-valued frequency response

PyDynamic.model_estimation.fit_transfer.fit_som(f, H, UH=None, weighting=None,

MCruns=None, scaling=0.001)
Fit second-order model to complex-valued frequency response

Fit second-order model (spring-damper model) with parameters Sy, delta and fy to complex-valued frequency
response with uncertainty associated with real and imaginary parts.
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For a transformation of an uncertainty associated with amplitude and phase to one associated with real and
imaginary parts, see PyDynamic.uncertainty.propagate DFT.AmpPhaseZDFT.

Parameters
* £ (np.ndarray of shape (M, ))- vector of frequencies

* H(np.ndarray of shape (2M,))-real and imaginary parts of measured frequency
response values at frequencies f

* UH(np.ndarray of shape (2M,) or (2M,Z2M))—uncertainties associated with
real and imaginary parts When UH is one-dimensional, it is assumed to contain standard
uncertainties; otherwise it is taken as covariance matrix. When UH is not specified no
uncertainties assoc. with the fit are calculated.

* weighting (str or array) — Type of weighting (None, ‘diag’, ‘cov’) or array of
weights ( length two times of f)

* MCruns (int, optional)— Number of Monte Carlo trials for propagation of uncer-
tainties. When MCruns is ‘None’, matrix multiplication is used for the propagation of un-
certainties. However, in some cases this can cause trouble.

* scaling (float) - scaling of least-squares design matrix for improved fit quality
Returns
* p (np.ndarray) — vector of estimated model parameters [SO, delta, O]

* Up (np.ndarray) — covariance associated with parameter estimate
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CHAPTER
SIX

DESIGN OF DECONVOLUTION FILTERS

Deprecated since version 1.2.71: The module deconvolution will be combined with the module identification
and renamed to model_estimation in the next major release 2.0.0. From then on you should only use the
new module Model estimation instead. The functions LSFIR (), LSFIR _unc (), LSIIR(), LSIIR unc (),
LSFIR_uncMC () arethen prefixed with an “inv” for “inverse”, indicating the treatment of the reciprocal of frequency
response values. Please use the new function names (e.g. PyDynamic.model estimation.fit_filter.
invLSIIR unc ()) starting from version 1.4.1. The old function names without preceding “inv” will only be pre-
served until the release prior to version 2.0.0.

The PyDynamic.deconvolution.fit_filter module implements methods for the design of digital decon-
volution filters by least-squares fitting to the reciprocal of a given frequency response with associated uncertainties.

This module for now still contains the following functions:
e LSFIR(): Least-squares fit of a digital FIR filter to the reciprocal of a given frequency response.
e LSFIR_unc (): Design of FIR filter as fit to reciprocal of frequency response values with uncertainty

* LSFIR_uncMC (): Design of FIR filter as fit to reciprocal of frequency response values with uncertainty via
Monte Carlo

e LSTIIR(): Design of a stable IIR filter as fit to reciprocal of frequency response values

* LSTIIR_unc (): Design of a stable IIR filter as fit to reciprocal of frequency response values with uncertainty
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CHAPTER
SEVEN

FITTING FILTERS AND TRANSFER FUNCTIONS MODELS

Deprecated since version 1.2.71: The package identification will be combined with the package deconvolution and
renamed to model_estimation in the next major release 2.0.0. From version 1.4.1 on you should only use the new
package Model estimation instead.

The package for now still contains the following modules:
e PyDynamic.identification.fit_filter: least-squares fit to a given complex frequency response

e PyDynamic.identification.fit_transfer: identification of transfer function models

7.1 Fitting filters to frequency response

Deprecated since version 1.2.71: The package identification will be combined with the package deconvolution and
renamed to model_estimation in the next major release 2.0.0. From version 1.4.1 on you should only use the new
package Model estimation instead.

This module contains several functions to carry out a least-squares fit to a given complex frequency response.
This module for now still contains the following functions:
* LSIIR(): Least-squares IIR filter fit to a given frequency response

* LSFIR(): Least-squares fit of a digital FIR filter to a given frequency response

7.2 ldentification of transfer function models

Deprecated since version 1.2.71: The package identification will be combined with the package deconvolution and
renamed to model_estimation in the next major release 2.0.0. From version 1.4.1 on you should only use the new
package Model estimation instead.

The module PyDynamic.identification.fit_transfer contains several functions for the identification
of transfer function models.

This module for now still contains the following function:

e fit_sos () : Fit second-order model to complex-valued frequency response
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CHAPTER
EIGHT

MISCELLANEOUS

The Miscellaneous package provides various functions and methods which are used in the examples and in some of
the other implemented routines.

The package contains the following modules:

8.1

PyDynamic.misc.SecondOrderSystem: tools for 2nd order systems
PyDynamic.misc.filterstuff: tools for digital filters
PyDynamic.misc.testsignals: test signals
PyDynamic.misc.noise: noise related functions

PyDynamic.misc.tools: miscellaneous useful helper functions

Tools for 2nd order systems

The PyDynamic.misc.SecondOrderSystem module is a collection of methods that are used throughout the
whole package, specialized for second order dynamic systems, such as the ones used for high-class accelerometers.

This module contains the following functions:

sos_FregResp (): Calculation of the system frequency response
sos_phys2filter (): Calculation of continuous filter coefficients from physical parameters

sos_absphase (): Propagation of uncertainty from physical parameters to real and imaginary part of sys-
tem’s transfer function using GUM S2 Monte Carlo

sos_realimag (): Propagation of uncertainty from physical parameters to real and imaginary part of sys-
tem’s transfer function using GUM S2 Monte Carlo

PyDynamic.misc.SecondOrderSystem.sos_FreqResp (S, d, f0, fregs)

Calculation of the system frequency response

The frequency response is calculated from the continuous physical model of a second order system given by

_ 4572 f2
H(f) = Grpyrraiaenior—r
If the provided system parameters are vectors then H ( f) is calculated for each set of parameters. This is helpful
for Monte Carlo simulations by using draws from the model parameters

Parameters
* S(float or ndarray shape (K, ))- static gain

* d(float or ndarray shape (K, ))-damping parameter
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* f0 (float or ndarray shape (K, ))-resonance frequency

* freqgs (ndarray shape (N, ))-frequencies at which to calculate the freq response
Returns H — complex frequency response values
Return type ndarray shape (N,) or ndarray shape (N,K)

PyDynamic.misc.SecondOrderSystem.sos_absphase (S, d, f0, uS, ud, uf0, f, runs=10000)
Propagation of uncertainty from physical parameters to real and imaginary part of system’s transfer function
using GUM S2 Monte Carlo.

Parameters
* S(float) - static gain
* d(float) - damping
* £0 (float) —resonance frequency
* uS (float) — uncertainty associated with static gain

* ud (float) — uncertainty associated with damping

uf0 (float) - uncertainty associated with resonance frequency

* £ (ndarray, shape (N,)) — frequency values at which to calculate amplitue and
phase

Returns
* Hmean (ndarray, shape (N,)) — best estimate of complex frequency response values

* Heov (ndarray, shape (2N,2N)) — covariance matrix [ [u(abs,abs), u(abs,phase)],
[u(phase,abs), u(phase,phase)] ]

PyDynamic.misc.SecondOrderSystem.sos_phys2filter (S, d, f0)
Calculation of continuous filter coefficients from physical parameters.

If the provided system parameters are vectors then the filter coefficients are calculated for each set of parameters.
This is helpful for Monte Carlo simulations by using draws from the model parameters

Parameters

* S (float) — static gain

* d(float) - damping parameter

* £0 (float) —resonance frequency
Returns b,a — analogue filter coefficients
Return type ndarray

PyDynamic.misc.SecondOrderSystem.sos_realimag (S, d, f0, uS, ud, uf0, f, runs=10000)
Propagation of uncertainty from physical parameters to real and imaginary part of system’s transfer function
using GUM S2 Monte Carlo.

Parameters
* S(float) - static gain
* d(float)-damping
* £0 (f1loat) - resonance frequency
* uS (float) — uncertainty associated with static gain

* ud (float) — uncertainty associated with damping
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* uf0 (float)— uncertainty associated with resonance frequency

* f(ndarray, shape (N, ))—{frequency values at which to calculate real and imaginary
part

Returns
* Hmean (ndarray, shape (N,)) — best estimate of complex frequency response values

* Hecov (ndarray, shape (2N,2N)) — covariance matrix [ [u(real,rreal), u(real,imag)],
[u(imag,real), u(imag,imag)] ]

8.2 Tools for digital filters

The PyDynamic.misc.filterstuff module is a collection of methods which are related to filter design.
This module contains the following functions:

* db (): Calculation of decibel values 20 log;,(x) for a vector of values

* ua (): Shortcut for calculation of unwrapped angle of complex values

e grpdelay (): Calculation of the group delay of a digital filter

* mapinside (): Maps the roots of polynomial with coefficients a to the unit circle

* kaiser_lowpass (): Design of a FIR lowpass filter using the window technique with a Kaiser window.

* isstable (): Determine whether a given IIR filter is stable

e savitzky_golay (): Smooth (and optionally differentiate) data with a Savitzky-Golay filter

PyDynamic.misc.filterstuff.db (vals)
Calculation of decibel values 20log;,(x) for a vector of values

PyDynamic.misc.filterstuff.grpdelay (b, a, Fs, nfft=512)
Calculation of the group delay of a digital filter

Parameters
* b (ndarray) — IIR filter numerator coefficients
* a(ndarray) - IIR filter denominator coefficients
* Fs (float) - sampling frequency of the filter
e nfft (int) - number of FFT bins
Returns
* group_delay (np.ndarray) — group delay values

* frequencies (ndarray) — frequencies at which the group delay is calculated
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References
¢ Smith, online book [Smith]
PyDynamic.misc.filterstuff.isstable (b, a, ftype='digital’)
Determine whether /IR filter (b,a) is stable
Determine whether /IR filter (b,a) is stable by checking roots of the polynomial “a”.
Parameters
* b (ndarray) — filter numerator coefficients
* a (ndarray) — filter denominator coefficients
» ftype (string)—type of filter (digital or analog)
Returns stable — whether filter is stable or not
Return type bool

PyDynamic.misc.filterstuff.kaiser_ lowpass (L, fcut, Fs, beta=8.0)
Design of a FIR lowpass filter using the window technique with a Kaiser window.

This method uses a Kaiser window. Filters of that type are often used as FIR low-pass filters due to their linear

phase.
Parameters
* L (int) — filter order (window length)
» fcut (float) —desired cut-off frequency
* Fs (float) - sampling frequency
* beta (float) — scaling parameter for the Kaiser window
Returns

* blow (ndarray) — FIR filter coefficients
* shift (int) — delay of the filter (in samples)

PyDynamic.misc.filterstuff.mapinside (a)
Maps the roots of polynomial to the unit circle.

Maps the roots of polynomial with coefficients a to the unit circle.
Parameters a (ndarray) — polynomial coefficients
Returns a — polynomial coefficients with all roots inside or on the unit circle
Return type ndarray

PyDynamic.misc.filterstuff.savitzky_golay (y, window_size, order, deriv=0, delta=1.0)
Smooth (and optionally differentiate) data with a Savitzky-Golay filter

The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the
original shape and features of the signal better than other types of filtering approaches, such as moving averages
techniques.

Source obtained from scipy cookbook (online), downloaded 2013-09-13
Parameters
* y(ndarray, shape (N, ))- the values of the time history of the signal

* window_size (int) - the length of the window. Must be an odd integer number
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* order (int) — the order of the polynomial used in the filtering. Must be less then win-
dow_size - 1.

* deriv (int, optional) — The order of the derivative to compute. This must be a
nonnegative integer. The default is O, which means to filter the data without differentiating.

* delta (float, optional)— The spacing of the samples to which the filter will be
applied. This is only used if deriv > 0. This includes a factor n!/h"™, where n is represented
by deriv and 1/h by delta.

Returns ys — the smoothed signal (or it’s n-th derivative).

Return type ndarray, shape (N,)

Notes

The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea
behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-
sized window centered at the point.

References

» Savitzky et al. [Savitzky]
* Numerical Recipes [NumRec]

PyDynamic.misc.filterstuff.ua (vals)
Shortcut for calculation of unwrapped angle of complex values

8.3 Test signals

The PyDynamic.misc.testsignals module is a collection of test signals which can be used to simulate dy-
namic measurements and test methods.

This module contains the following functions:

* shocklikeGaussian (): signal that resembles a shock excitation as a Gaussian followed by a smaller
Gaussian of opposite sign

* GaussianPulse (): Generates a Gaussian pulse at ¢y with height mg and std sigma

e rect (): Rectangular signal of given height and width ¢; — g

* squarepulse (): Generates a series of rect functions to represent a square pulse signal
* sine (): Generate a sine signal

PyDynamic.misc.testsignals.GaussianPulse (time, t0, m0, sigma, noise=0.0)
Generates a Gaussian pulse at tO with height m0 and std sigma

Parameters
* time (np.ndarray of shape (N, ))-— time instants (equidistant)
* t0 (float) —time instant of signal maximum
* m0 (f1loat) - signal maximum

* sigma (float) - std of pulse
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* noise (float, optional)- stdof simulated signal noise
Returns x — signal amplitudes at time instants
Return type np.ndarray of shape (N,)

class PyDynamic.misc.testsignals.corr_noise (w, sigma, seed=None)
Base class for generation of a correlated noise process.

PyDynamic.misc.testsignals.rect (time, t0, t1, height=1, noise=0.0)
Rectangular signal of given height and width t1-t0

Parameters
* time (np.ndarray of shape (N, ))-— time instants (equidistant)
e £0 (float) - time instant of rect lhs
* t1 (float) - time instant of rect rhs
* height (float) - signal maximum

* noise (float or numpy.ndarray of shape (N,), optional) - float:
standard deviation of additive white gaussian noise ndarray: user-defined additive noise

Returns x — signal amplitudes at time instants
Return type np.ndarray of shape (N,)

PyDynamic.misc.testsignals.shocklikeGaussian (time, t0, m0, sigma, noise=0.0)
Generates a signal that resembles a shock excitation as a Gaussian followed by a smaller Gaussian of opposite
sign.

Parameters
* time (np.ndarray of shape (N, ))-time instants (equidistant)
* t0 (float) - time instant of signal maximum
* m0 (float)— signal maximum
* sigma (float) — std of main pulse
* noise (float, optional)- stdof simulated signal noise
Returns x — signal amplitudes at time instants
Return type np.ndarray of shape (N,)

PyDynamic.misc.testsignals.sine (time, amp=1.0, freq=6.283185307179586, noise=0.0)
Generate a sine signal

Parameters
e time (np.ndarray of shape (N, ))-time instants
* amp (float, optional)— amplitude of the sine (default = 1.0)
* freq(float, optional)- frequency of the sine in Hz (default = 2 x 7)
* noise (float, optional) - stdof simulated signal noise (default = 0.0)
Returns x — signal amplitude at time instants
Return type np.ndarray of shape (N,)

PyDynamic.misc.testsignals.squarepulse (time, height, numpulse=4, noise=0.0)
Generates a series of rect functions to represent a square pulse signal
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Parameters

* time (np.ndarray of shape (N, ))-time instants

* height (float) - height of the rectangular pulses

* numpulse (int)— number of pulses

* noise (float, optional)- stdof simulated signal noise
Returns x — signal amplitude at time instants

Return type np.ndarray of shape (N,)

8.4 Noise related functions

Collection of noise-signals
This module contains the following functions:
* get_alpha (): normal distributed signal amplitudes with equal power spectral density
* power_law_noise (): normal distributed signal amplitudes with power spectrum :math:fNpha
* power_law_acft (): (theoretical) autocorrelation function of power law noise
e ARMA (): autoregressive moving average noise process

PyDynamic.misc.noise.ARMA (length, phi=0.0, theta=0.0, std=1.0)
Gengrate time-series of a predefined ARMA-process based on this equation: Z;.n:”i(p n=b) djeln — 4] +
me(q’"_l) 6;w[n — j] where w is white gaussian noise. Equation and algorithm taken from [Eichst2012]

Jj=1

Parameters
* length (int)—how long the drawn sample will be
* phi (float, list or numpy.ndarray, shape (p, ))-— AR-coefficients
* theta (float, list or numpy.ndarray)-— MA-coefficients
* std (float) - std of the gaussian white noise that is feeded into the ARMA-model
Returns e — time-series of the predefined ARMA-process

Return type numpy.ndarray, shape (length, )

References
¢ Eichstidt, Link, Harris and Elster [Eichst2012]

PyDynamic.misc.noise.get_alpha (color_value=0)
Translate a color (given as string) into an exponent alpha or directly hand through a given numeric value of

alpha.

Parameters color_value (str, int or float) — if string -> check against known color-
names -> return alpha if numeric -> directly return value

Returns alpha
Return type float
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PyDynamic.misc.noise.power_law_acf (N, color_value="white', std=1.0)
Return the theoretic right-sided autocorrelation (Rww) of different colors of noise.

Colors of noise are defined to have a power spectral density (Sww) proportional to f*lpha. Sww and Rww form
a Fourier-pair. Therefore Rww = ifft(Sww).

PyDynamic.misc.noise.power_law_noise (N=None, w=None, color_value="white', mean=0.0,

std=1.0)
Generate colored noise by * generate white gaussian noise * multiplying its Fourier-transform with f*(alpha/2) *

inverse Fourier-transform to yield the colored/correlated noise * further adjustments to fit to specified mean/std
based on [Zhivomirov2018](A Method for Colored Noise Generation)
Parameters
* N (int) - length of noise to be generated
* w(numpy.ndarray) — user-defined white noise if provided, N is ignored!

* color_value (str, int or float)-if string -> check against known colornames
if numeric -> used as alpha to shape PSD

* mean (float)— mean of the output signal
* std (float) - standard deviation of the output signal
Returns w_filt

Return type filtered noise signal

8.5 Miscellaneous useful helper functions

The PyDynamic.misc.tools module is a collection of miscellaneous helper functions.
This module contains the following functions:

e print_vec (): Print vector (1D array) to the console or return as formatted string

e print_mat (): Print matrix (2D array) to the console or return as formatted string

* make_semiposdef (): Make quadratic matrix positive semi-definite

e FregRespZReallImag (): Calculate real and imaginary parts from frequency response

* make_equidistant () : Interpolate non-equidistant time series to equidistant

e trimOrPad (): trim or pad (with zeros) a vector to desired length

* progress_bar (): A simple and reusable progress-bar

PyDynamic.misc.tools.FreqResp2ReallImag (Abs, Phase, Unc, MCruns=10000.0)
Calculate real and imaginary parts from frequency response

Calculate real and imaginary parts from amplitude and phase with associated uncertainties.
Parameters
* Abs ((N,) array_like)- amplitude values
* Phase ( (N, ) array_1like)— phase values in rad
* Unc((2N, 2N) or (2N,) array_like)-uncertainties
e MCruns (boo1l) - Iterations for Monte Carlo simulation

Returns
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* Re, Im ((N,) array_like) — real and imaginary parts (best estimate)
* URI ((2N, 2N) array_like) — uncertainties assoc. with Re and Im

PyDynamic.misc.tools.make_semiposdef (matrix, maxiter=10, tol=1e-12, verbose=False)
Make quadratic matrix positive semi-definite by increasing its eigenvalues

Parameters
* matrix ((N,N) array_1like)— the matrix to process
* maxiter (int) - the maximum number of iterations for increasing the eigenvalues
* tol (float) - tolerance for deciding if pos. semi-def.
* verbose (bool)—If True print smallest eigenvalue of the resulting matrix
Returns quadratic positive semi-definite matrix
Return type (N,N) array_like

PyDynamic.misc.tools.print_mat (matrix, prec=5, vertical=False, retS=False)
Print matrix (2D array) to the console or return as formatted string

Parameters
* matrix ((M,N) array_like)-—
* prec (int) — the precision of the output
* vertical (bool) — print out vertical or not
* retS (bool) — print or return string
Returns s — if retS is True
Return type str

PyDynamic.misc.tools.print_vec (vector, prec=5, retS=False, vertical=False)
Print vector (1D array) to the console or return as formatted string

Parameters
* vector ((M,) array_like)—
* prec (int) — the precision of the output
* vertical (bool) — print out vertical or not
* retS (bool) — print or return string
Returns s — if retS is True
Return type str

PyDynamic.misc.tools.progress_bar (count, count_max, width=30, prefix=", done_indicator="#',
todo_indicator=".", Sfout=<_io.TextIOWrapper
name="'<stdout>"' mode="w' encoding="utf-8'>)

A simple and reusable progress-bar

Parameters
e count (int)— current status of iterations, assumed to be zero-based
e count_max (int) — total number of iterations

* width (int, optional)— width of the actual progressbar (actual printed line will be
wider)
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* prefix (str, optional) — some text that will be printed in front of the bar (i.e.
“Progress of ABC:”)

* done_indicator (str, optional) — what character is used as “already-done”-
indicator

* todo_indicator (str, optional) — what character is used as “not-done-yet”-
indicator

» fout (file-object, optional)— where the progress-bar should be written/printed
to

PyDynamic.misc.tools.trimOrPad (array, length, mode='constant')
Trim or pad (with zeros) a vector to desired length
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